Pore size distribution in tablets measured with a morphological sieve.

نویسندگان

  • Yu San Wu
  • Lucas J van Vliet
  • Henderik W Frijlink
  • Kees van der Voort Maarschalk
چکیده

Porosity and pore structure are important characteristics of tablets, since they influence mechanical strength and many other properties. This paper proposes an alternative method for the characterization of pore structure based on image analysis of SEM micrographs. SEM images were made of sodium chloride tablets made with three different particle sizes. The pore size distribution in these images was determined with a technique referred to as a morphological sieve. The results were compared to the pore size distributions as obtained with mercury porosimetry. The SEM images display small cracks inside the grains and small 'floating' grains inside the pore space. As these artifacts are induced in sample preparation, they need to be identified and removed from the images before analysis. The influence of the size of the discarded structures on the total porosity and the pore size distribution was investigated. The small 'floating' grains prevented the determination of the size of large pores, but had a negligible effect on the porosity. The removal of small cracks inside the grains had no effect on the pore size distribution but a large effect on the porosity. Based on the comparison of these results with the experimentally determined porosity, a maximum size for the structures that were to be removed was determined. The resulting pore size distributions were in the same order of magnitude as the results obtained with mercury porosimetry. Both methods display a comparable relative shift of the pore size distributions to larger sizes for tablets with increasing particle size. Therefore, it can be concluded this image analysis technique is a good method for the characterization of pore structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Activation Time on Pore Size Distribution of Activated Carbon Determined with Different Methods

Three activated carbons are synthesized in a rotary reactor at different activation times. The adsorption isotherms of the samples are measured The pore size distribution of the samples is determined using combined Saito and Foley method, BJH method. An average potential function has been determined inside the cylindrical pores. The effect of activation time on the pore size distribution sample...

متن کامل

A Rotation-Invariant Morphology for Shape Analysis of Anisotropic Objects and Structures

In this paper we propose a series of novel morphological operators that are anisotropic, and adapt themselves to the local orientation in the image. This new morphology is therefore rotation invariant; i.e. rotation of the image before or after the operation yields the same result. We present relevant properties required by morphology, as well as other properties shared with common morphologica...

متن کامل

Investigation of the Effect of Atmosphere on the Pores of Sintered Astaloy CrM Steel

Abstract Image analysis is used to study the effect of sintering atmosphere and sintering times on the pores morphology of Astaloy CrM. The pores morphology was described by means of some parameters, Circular Diameter (DC)- which shows the diameter of equivalent circle for comparing the pore size, FElongation and FShape- which have different geometrical meanings. The results have been interpret...

متن کامل

Practical observation of deviation from Lucas–Washburn scaling in porous media

This work analyses the applicability of the Lucas–Washburn equation to experimental observations of imbibition into real network structures. The experimental pore structures used in this study are constructed from tablets of two finely ground calcium carbonates, with defined differences in particle size distribution. These are compressed under a range of different applied pressures to achieve a...

متن کامل

Micro filtration Membrane Sieve with Silicon Micro Machining for Industrial and Biomedical Applications

With the use of silicon micromachining an inorganic membrane sieve for microfiltration is constructed, having a siliconnitride membrane layer with thickness typically 1 pm and perforations typically between 0.5 pm and 10 pm in diameter. As a support a -silicon wafer with openings of loo0 pm in diameter is used. The thin siliconnitride layer is deposited on an initial dense support by means...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of pharmaceutics

دوره 342 1-2  شماره 

صفحات  -

تاریخ انتشار 2007